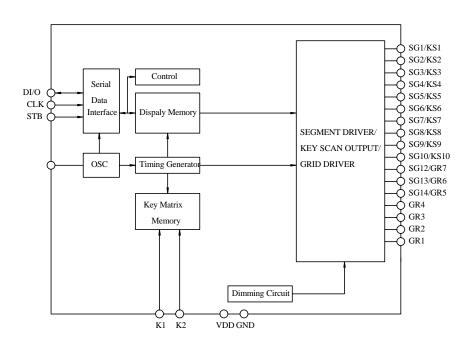


DESCRIPTION

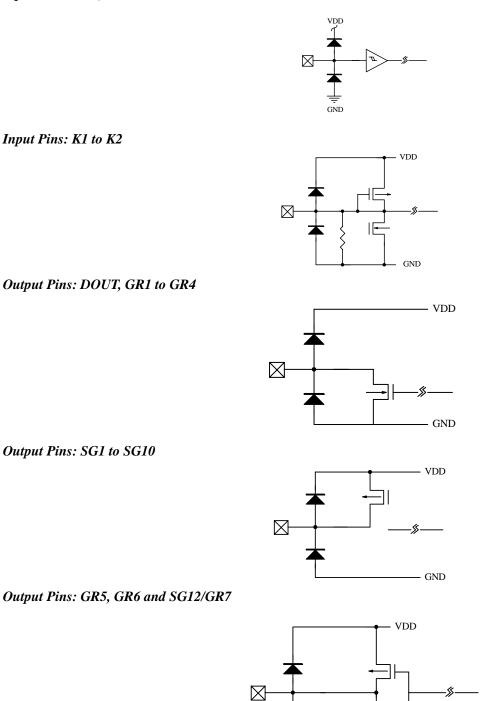
HT1668 is an LED Controller driven on a 1/7 to 1/8 duty factor. Eleven segment output lines, six grid output lines, 1 segment/grid output lines, one display memory, control circuit, key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip microcomputer. Serial data is fed to HT1668 via a four-line serial interface. Housed in a 24-pin SO Package, HT1668 pin assignments and application circuit are optimized for easy PCB Layout and cost saving advantages.


FEATURES

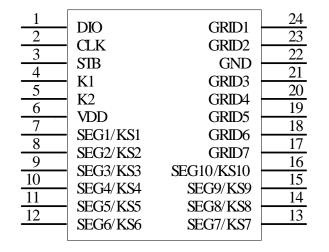
- CMOS Technology
- Low Power Consumption
- Multiple Display Modes
- Key Scanning
- 8-Step Dimming Circuitry
- Serial Interface for Clock, Data Input, Data Output, Strobe Pins
- Available in 24-Pin, SOP Package

APPLICATION

- Micro-computer Peripheral Device
- VCR set
- Combi set


BLOCK DIAGRAM

INPUT/OUTPUT CONFIGURATIONS


The schematic diagrams of the input and output circuits of the logic section are shown below. *Input Pins: CLK, STB & DIN*

GND

PIN CONFIGURATION

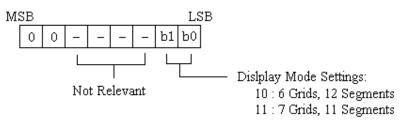
PIN DESCRIPTION

Pin Name	I/O	Description
DI/O	I/O	Data Output Pin (N-Channel, Open-Drain) or Data Input pin This pin Outputs/Input serial data at the falling(rising) edge of the shift clock.
CLK	Ι	Clock Input Pin This pin reads serial data at the rising edge and outputs data at the falling edge.
STB	Ι	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command When this pin is "HIGH", CLK is ignored.
K1 to K2	Ι	Key Data Input Pins. The data sent to these pins are latched at the end of the display cycle. (Internal Pull-Low Resistor)
GND	-	GroundPin
SG1/KS1 to SG10/KS10	0	Segment Output Pins (p-channel, open drain) Also acts as the Key Source
SG12/GR7 toSG14/GR5	0	Segment/Grid Output Pins
VDD	-	Power Supply
GR4 to GR1	0	Grid Output Pins

FUNCTIONAL DESCRIPTION

COMMANDS

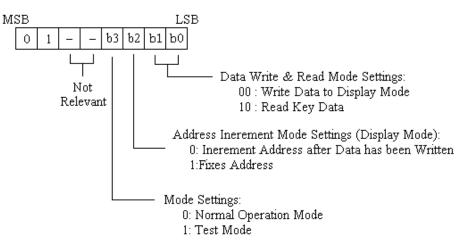
A command is the first byte (b0 to b7) inputted to HT1668 via the DIN Pin after STB pin has changed from HIGH to LOW Stage. If for some reason the STB Pin is set to HIGH while data or commands are being transmitted, the serial communications is initialized, and the data/commands being transmitted are considered invalid.



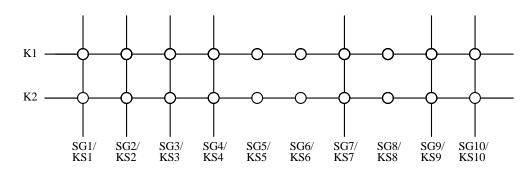
Command 1: Display Mode Setting Commands

HT1668 provides 2 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to HT1668 via the DIN Pin when STB is LOW. However, for these commands, the bit 3 to bit 6 (b2 to b5) are ignored, bit 7 & bit 8 (b6 to b7) are given value of 0.

The Display Mode Setting Commands determine the number of segments and grids to be used (12 to 11 segments, 6 to 7 grids). A display command ON must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.


When Power is turned ON, the 7-grid, 11-segment modes is selected.

Command 2: Data Setting Commands

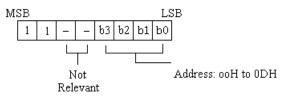

The Data Setting Commands executes the Data Write or Data Read Modes for HT1668. The data Setting Command, the bits 5 and 6 (b4,b5) are ignored, bit 7 (b6) is given the value of 1 while bit 8 (b7) is given the value of 0. Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of 0.

HT1668 KEYMATRIX & KEYINHUT DATA STORAGE RAM

HT1668 Key Matrix consists of 10 x 2 array as shown below:

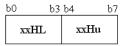
Each data entered by each key is stored as follows and read by a READ Command, starting from the last significant bit. When the most significant bit of the data (b0) has been read, the least significant bit of the next data (b7) is read.


К	С1К2	К1К	2		
	SG1/KS1	SG2/KS2	Х		
	SG3/KS3	SG4/KS4	х		DEADING
	SG5/KS5	SG6/KS6	х		READING SEQUENCE
	SG7/KS7	SG8/KS8	х		
	SG9/KS9	SG10/KS10	Х	٦	7
	b0b2	b3b5	b6b7	,	

Note: b6 and b7 do not care

Command 3: Address Setting Commands

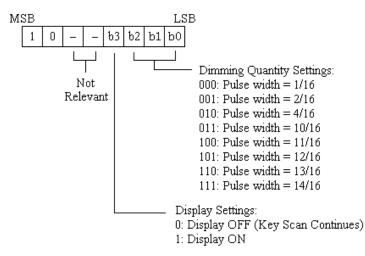
Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of 00H to 0DH. If the address is set to 0EH or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at at 00H.


Please refer to the diagram below.

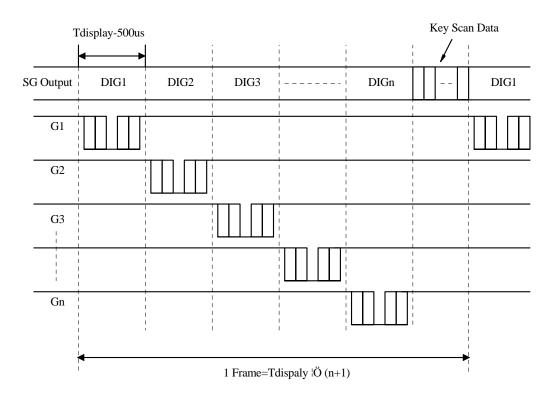
DISPALYMODE AND RAMADDRESS

Data transmitted from an external device to HT1668 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM addresses of HT1668 are given below in 8 bits unit.

SG1	SG4	SG5	SG8	SG9	SG12	
	OOHL	00Hu		01HI	2	DIG1
	02HL	02Hu		03HI		DIG2
	04HL	04Hu		05HI		DIG3
	06HL	06Hu		07H1	L	DIG4
	08HL	08Hu		09H1	L	DIG5
	OAHL	0AHu		0BH	L	DIG6
	OCHL	OCHu		ODH	L	DIG7



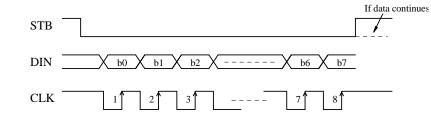
Lower 4 bits Higher 4 bits


Command 4: Display Control Commands

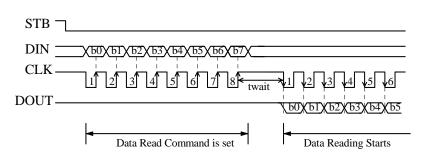
The Display Control Commands are used to turn ON or OFF a display. It also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 Pulse width is selected and the displayed is turned OFF (the key scanning is started).

SCANNING AND DISPLAY TIMING

The key Scanning and Display Timing diagram is given below. One cycle of key scanning consists of 2 frames. The data of the are 10 x 3 matrix is stored in the RAM.

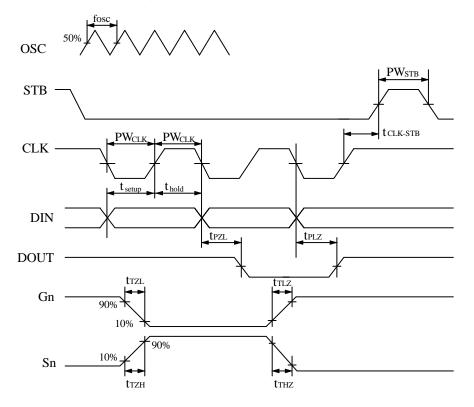


SERIAL COMMUNICATION FROMAT


The following diagram shows the HT1668 serial communication format. The DOUT Pin is an N-channel, opendrain output

pin, therefore, it is highly recommended that an external pull-up resistor (1 KOhms to 10 KOhms) must be connected to DOUT. *RECEPTION (Data/Command Write)*

TRANSMISSION (Data Read)

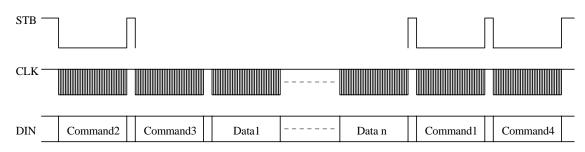


where: t_{wait} (waiting time) $\geq 1 \,\mu s$

It must be noted that when the data is read, the waiting time (t_{wait}) between the rising of the eighth clock that has set the command and the falling of the first clock that has read the data is greater or equal to 1 μ s.

SWITCHING CHARACTERISTIC WAVEFORM

HT1668 Switching Characteristics Waveform is given below.

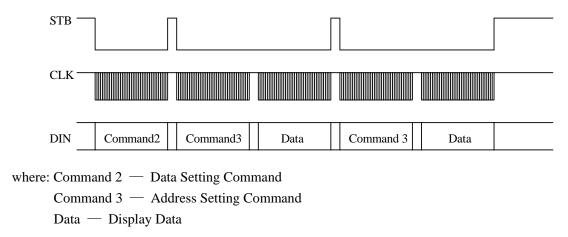


where:	PW_{CLK} (Clock Pulse Width) $\geq 400nS$	PW_{STB} (Strobe Pulse Width) $\geq 1 \mu s$					
	t_{setup} (Data Setup Time) \geq 100nS	t_{hold} (Data Hold Time) ≥ 100 nS					
	t_{CLK} -STB (Clock-Strobe Time) $\geq 1 \mu s$	t _{THZ} (Fall Time)≤10 µ s					
	t_{TZH} (Rise Time) $\leq 1 \mu s$	t_{PZL} (Propagation Delay Time) ≤ 100 nS					
	fosc=Oscillation Frequency	t_{PLZ} (Propagation Delay Time) ≤ 300 uS					
	$t_{TZL} < 1 \mu s$	t _{TLZ} <10 µ s					
Note: 7	Note: Test condition under						
t _{THZ} (Pull low risistor=100k ohms, Loading capacitor =300pf)							
	t _{TLZ} (Pull high risistor =100k ohms, Loading of	capacitor=300pf)					

APPLICATIONS

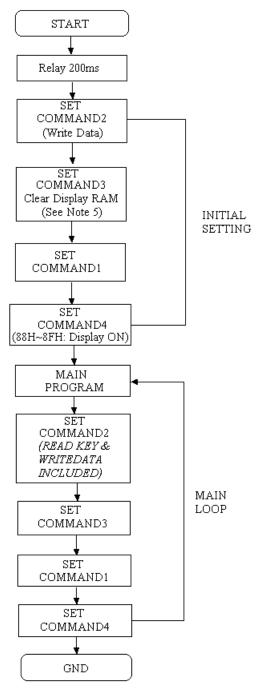
Display memory is updated by incrementing addresses. Please refer to the following diagram.

where: Command 1: Display Mode Setting Command


Command 2: Data Setting Command

Command 3: Address Setting Command

Data 1 to n : Transfer Display Data (14 Bytes max.)


Command 4: Display Control Command

The following diagram shows the waveforms when updating specific addresses.

RECOMMENDED SOFTWARE PROGRAMMING FLOWCHART

Note: 1. Command 1: Display Mode Commands

- 2. Command 2: Data Setting Commands
- 3. Command 3: Address Setting Commands
- 4. Command 4: Display Control Commands
- 5. When IC power is applied for the first time, the contents of the Display RAM is not defined; thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25°C, GND=0V)

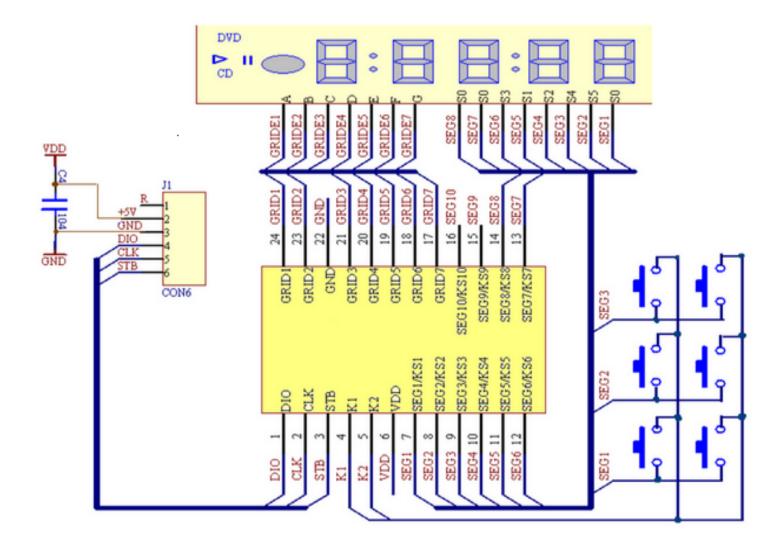
Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	-0.5 to +7	Volts
Logic Input Voltage	VI	-0.5 to V_{DD} +0.5	Volts
Driver Output Current	I _{OLGR}	+250	mA
Driver Output Current	I _{OHSG}	-50	mA
Maximum Driver Output Current/Total	I _{TOTAL}	400	mA

RECOMMENDED OPERATING RANGE

(Unless otherwise stated, Ta=-20 to +70°C, GND=0V)

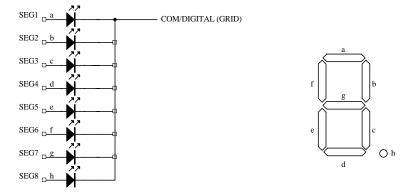
Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	V_{DD}	4.5	5	5.5	V
Dynamic Current (see Note)	I _{DDdyn}	-	-	10	mA
High-Level Input Voltage	V _{IH}	$0.8V_{DD}$	-	V _{DD}	V
Low-Level Input Voltage	V _{IL}	0	-	$0.3V_{DD}$	V

Note: Test Condition: Set Display Control Commands = 80H (Display Turn OFF State & under no load)


ELECTRICAL CHARACTERISTICS

(Unless otherwise stated, $V_{DD}=5V$, GND=0V, Ta=25 °C)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	IOHSG1	Vo=VDD-2V	-20	-25	-40	mA
High-Level Output Current		SG1 to SG10, SG12/GR7				
High-Level Output Current	IOHSG2	Vo=VDD-3V	-25	-30	-50	mA
		SG1 to SG12, SG12/GR7	-23			шА
Low-Level Output Current	IOLGR	Vo=0.3V	100	140	-	mA
Low-Level Output Current		GR1 to GR6, SG12/GR7				
Low-Level Output Current	IOLDOUT	Vo=0.4V	4	-	-	mA
Segment High-Level	ITOLSG	Vo=VDD-3V	-	-	± 5	mA
Output Current Tolerance	HOLSO	SG1 to SG10, SG12/GR7				
High-Level Input Voltage	VIH	-	$0.8 \ V_{DD}$	-	5	V
Low-Level Input Voltage	VIL	-	0	-	$0.3V_{\text{DD}}$	V
Oscillation Frequency fosc			350	500	650	KHz
K1 to K2 Pull Down Resistor	Desister DKN	K1 to K2	40	-	100	KOhms
KI to K2 Full Dowil Resistor	RKN	VDD=5V	40			



APPLICATION CIRCUIT

COMMON CATHODE TYPE LED PANEL:

- Note: 1. The capacitor (0.1uF) connected between the GND and the VDD pins must be located as close as possible to the HT1668 chip.
 - 2. The HT1668 power supply is separate from the application system power supply.